Search results
Results From The WOW.Com Content Network
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. [1] There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of ...
Collaborative (joint) sparse coding: The original version of the problem is defined for a single signal . In the collaborative (joint) sparse coding model, a set of signals is available, each believed to emerge from (nearly) the same set of atoms from . In this case, the pursuit task aims to recover a set of sparse representations that best ...
A sparse matrix obtained when solving a modestly sized bundle adjustment problem. This is the arrowhead sparsity pattern of a 992×992 normal-equation (i.e. approximate Hessian) matrix. Black regions correspond to nonzero blocks.
A frontal solver is an approach to solving sparse linear systems which is used extensively in finite element analysis. [1] Algorithms of this kind are variants of Gauss elimination that automatically avoids a large number of operations involving zero terms due to the fact that the matrix is only sparse. [2]
A band matrix with k 1 = k 2 = 0 is a diagonal matrix, with bandwidth 0. A band matrix with k 1 = k 2 = 1 is a tridiagonal matrix, with bandwidth 1. For k 1 = k 2 = 2 one has a pentadiagonal matrix and so on. Triangular matrices. For k 1 = 0, k 2 = n−1, one obtains the definition of an upper triangular matrix
In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite. The conjugate gradient method is often implemented as an iterative algorithm , applicable to sparse systems that are too large to be handled by a direct ...
In mathematics, more specifically in linear algebra, the spark of a matrix is the smallest integer such that there exists a set of columns in which are linearly dependent. If all the columns are linearly independent, s p a r k ( A ) {\displaystyle \mathrm {spark} (A)} is usually defined to be 1 more than the number of rows.
Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.