Search results
Results From The WOW.Com Content Network
The blood–brain barrier (BBB) is a highly selective semipermeable border of endothelial cells that regulates the transfer of solutes and chemicals between the circulatory system and the central nervous system, thus protecting the brain from harmful or unwanted substances in the blood. [1]
Dopamine does not cross the blood–brain barrier, so its synthesis and functions in peripheral areas are to a large degree independent of its synthesis and functions in the brain. [26] A substantial amount of dopamine circulates in the bloodstream, but its functions there are not entirely clear. [27]
Dopamine released at this site inhibits the secretion of prolactin from anterior pituitary gland lactotrophs by binding to dopamine receptor D2. Some antipsychotic drugs block dopamine in the tuberoinfundibular pathway, which can cause an increase in the amount of prolactin in the blood (hyperprolactinemia).
The dopamine neurons of the dopaminergic pathways synthesize and release the neurotransmitter dopamine. [2] [3] Enzymes tyrosine hydroxylase and dopa decarboxylase are required for dopamine synthesis. [4] These enzymes are both produced in the cell bodies of dopamine neurons. Dopamine is stored in the cytoplasm and vesicles in axon terminals.
The cells of the neurovascular unit also make up the blood–brain barrier (BBB), which plays an important role in maintaining the microenvironment of the brain. [11] In addition to regulating the exit and entrance of blood, the blood–brain barrier also filters toxins that may cause inflammation, injury, and disease. [12]
The CTZ is located within the area postrema, which is on the floor of the fourth ventricle and is outside of the blood–brain barrier. [1] It is also part of the vomiting center itself. [ 2 ] The neurotransmitters implicated in the control of nausea and vomiting include acetylcholine , dopamine , histamine (H1 receptor), substance P (NK-1 ...
The substantia nigra is located in the ventral midbrain of each hemisphere. It has two distinct parts, the pars compacta (SNc) and the pars reticulata (SNr). The pars compacta contains dopaminergic neurons from the A9 cell group that forms the nigrostriatal pathway that, by supplying dopamine to the striatum, relays information to the basal ganglia.
It is one of the four major dopamine pathways in the brain. It is essential to the normal cognitive function of the dorsolateral prefrontal cortex (part of the frontal lobe), and is thought to be involved in cognitive control, motivation, and emotional response. [1] [2]