Ads
related to: statistical risk function equation generator
Search results
Results From The WOW.Com Content Network
An example is shown on the left. The parameter space has just two elements and each point on the graph corresponds to the risk of a decision rule: the x-coordinate is the risk when the parameter is and the y-coordinate is the risk when the parameter is . In this decision problem, the minimax estimator lies on a line segment connecting two ...
Statistical risk is a quantification of a situation's risk using statistical methods.These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of ...
The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).
The MISE is also known as L 2 risk function. See also. Minimum distance estimation; Mean squared error; ... Statistics; Cookie statement; Mobile view; Search. Search.
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables . [ 1 ]
The Bayes risk of ^ is defined as ((, ^)), where the expectation is taken over the probability distribution of : this defines the risk function as a function of ^. An estimator θ ^ {\displaystyle {\widehat {\theta }}} is said to be a Bayes estimator if it minimizes the Bayes risk among all estimators.
Empirical risk minimization for a classification problem with a 0-1 loss function is known to be an NP-hard problem even for a relatively simple class of functions such as linear classifiers. [5] Nevertheless, it can be solved efficiently when the minimal empirical risk is zero, i.e., data is linearly separable. [citation needed]