When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The above identities concerning the determinant of products and inverses of matrices imply that similar matrices have the same determinant: two matrices A and B are similar, if there exists an invertible matrix X such that A = X −1 BX. Indeed, repeatedly applying the above identities yields

  3. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    Two matrices must have an equal number of rows and columns to be added. [1] In which case, the sum of two matrices A and B will be a matrix which has the same number of rows and columns as A and B. The sum of A and B, denoted A + B, is computed by adding corresponding elements of A and B: [2] [3]

  4. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  5. Hadamard's maximal determinant problem - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_maximal...

    Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest determinant of a matrix with elements equal to 1 or −1. The analogous question for matrices with elements equal to 0 or 1 is equivalent since, as will be shown below, the maximal determinant of a {1,−1} matrix of size n is 2 n−1 times the maximal determinant of a {0,1} matrix of size n−1.

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Circular matrix or Coninvolutory matrix: A matrix whose inverse is equal to its entrywise complex conjugate: A −1 = A. Compare with unitary matrices. Congruent matrix: Two matrices A and B are congruent if there exists an invertible matrix P such that P T A P = B. Compare with similar matrices. EP matrix or Range-Hermitian matrix

  7. Leibniz formula for determinants - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for...

    Instead, the determinant can be evaluated in () operations by forming the LU decomposition = (typically via Gaussian elimination or similar methods), in which case = and the determinants of the triangular matrices and are simply the products of their diagonal entries. (In practical applications of numerical linear algebra, however, explicit ...

  8. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    Because the null space of a matrix is the orthogonal complement of the row space, two matrices are row equivalent if and only if they have the same null space. The rank of a matrix is equal to the dimension of the row space, so row equivalent matrices must have the same rank. This is equal to the number of pivots in the reduced row echelon form.

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]