When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tafel equation - Wikipedia

    en.wikipedia.org/wiki/Tafel_equation

    Tafel plot for an anodic process . The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. [1] The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The equation is named after Swiss chemist Julius Tafel.

  3. Exchange current density - Wikipedia

    en.wikipedia.org/wiki/Exchange_current_density

    Such rates provide insights into the structure and bonding in the analyte and the electrode. For example, the exchange current densities for platinum and mercury electrodes for reduction of protons differ by a factor of 10 10, indicative of the excellent catalytic properties of platinum. Owing to this difference, mercury is the preferred ...

  4. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    Using the Tafel equation, one can obtain kinetic information about the kinetics of the electrode material such as the exchange current density and the Tafel slope. [6] OER is presumed to not take place on clean metal surfaces such as platinum, but instead an oxide surface is formed prior to oxygen evolution.

  5. Overpotential - Wikipedia

    en.wikipedia.org/wiki/Overpotential

    The overpotential increases with growing current density (or rate), as described by the Tafel equation. An electrochemical reaction is a combination of two half-cells and multiple elementary steps. Each step is associated with multiple forms of overpotential. The overall overpotential is the summation of many individual losses.

  6. Voltammetry - Wikipedia

    en.wikipedia.org/wiki/Voltammetry

    At high overpotentials, the Butler–Volmer equation simplifies to the Tafel equation. The Tafel equation relates the electrochemical currents to the overpotential exponentially, and is used to calculate the reaction rate. [11] The overpotential is calculated at each electrode separately, and related to the voltammogram data to determine ...

  7. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    The upper graph shows the current density as function of the overpotential η . The anodic and cathodic current densities are shown as j a and j c, respectively for α=α a =α c =0.5 and j 0 =1mAcm −2 (close to values for platinum and palladium).

  8. Mott–Schottky plot - Wikipedia

    en.wikipedia.org/wiki/Mott–Schottky_plot

    The slope gives the doping (semiconductor) density (provided that the dielectric constant is known). The intercept to the x axis provides the built-in potential, or the flatband potential (as here the surface barrier has been flattened) and allows establishing the semiconductor conduction band level with respect to the reference of potential.

  9. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".