When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    A property of the single- and double-precision formats is that their encoding allows one to easily sort them without using floating-point hardware, as if the bits represented sign-magnitude integers, although it is unclear whether this was a design consideration (it seems noteworthy that the earlier IBM hexadecimal floating-point representation ...

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit ...

  4. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.

  5. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    [citation needed] Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language implementers. E.g., GW-BASIC's double-precision data type was the 64-bit MBF floating-point format.

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    This means that numbers that appear to be short and exact when written in decimal format may need to be approximated when converted to binary floating-point. For example, the decimal number 0.1 is not representable in binary floating-point of any finite precision; the exact binary representation would have a "1100" sequence continuing endlessly:

  7. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    In the base −2 representation, a signed number is represented using a number system with base −2. In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.

  8. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    Annex "Z" introduced optional data types for supporting other fixed-width floating-point formats, as well as arbitrary-precision formats (i.e., where the precision of representation and rounding is determined at execution time) – some of this material was moved into the body of the draft by generalizing section 5. Arbitrary precision was dropped.

  9. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    A binary encoding is inherently less efficient for conversions to or from decimal-encoded data, such as strings (ASCII, Unicode, etc.) and BCD. A binary encoding is therefore best chosen only when the data are binary rather than decimal. IBM has published some unverified performance data. [2]