Search results
Results From The WOW.Com Content Network
Equality of forward and backward reaction rates, however, is a necessary condition for chemical equilibrium, though it is not sufficient to explain why equilibrium occurs. Despite the limitations of this derivation, the equilibrium constant for a reaction is indeed a constant, independent of the activities of the various species involved ...
Competitive equilibrium, economic equilibrium when all buyers and sellers are small relative to the market; Economic equilibrium, a condition in economics; Equilibrium price, the price at which quantity supplied equals quantity demanded; General equilibrium theory, a branch of theoretical microeconomics that studies multiple individual markets
In chemistry, Le Chatelier's principle (pronounced UK: / l ə ʃ æ ˈ t ɛ l j eɪ / or US: / ˈ ʃ ɑː t əl j eɪ /) [1] is a principle used to predict the effect of a change in conditions on chemical equilibrium. [2] Other names include Chatelier's principle, Braun–Le Chatelier principle, Le Chatelier–Braun principle or the equilibrium ...
The equilibrium constant for a full redox reaction can be obtained from the standard redox potentials of the constituent half-reactions. At equilibrium the potential for the two half-reactions must be equal to each other and, of course, the number of electrons exchanged must be the same in the two half reactions. [32]
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y -axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
Classical thermodynamics deals with states of dynamic equilibrium.The state of a system at thermodynamic equilibrium is the one for which some thermodynamic potential is minimized (in the absence of an applied voltage), [2] or for which the entropy (S) is maximized, for specified conditions.
For example, if two systems of ideal gases are in joint thermodynamic equilibrium across an immovable diathermal wall, then P 1 V 1 / N 1 = P 2 V 2 / N 2 where P i is the pressure in the ith system, V i is the volume, and N i is the amount (in moles, or simply the number of atoms) of gas.
Only when these two "forces" (or chemical potentials) are equal is there equilibrium, and the net rate of transfer zero. The two thermodynamic parameters that form a generalized force-displacement pair are called "conjugate variables". The two most familiar pairs are, of course, pressure-volume, and temperature-entropy.