Ad
related to: error correction and detection codes list pdf download
Search results
Results From The WOW.Com Content Network
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
Chapter 5 studies cyclic codes and Chapter 6 studies a special case of cyclic codes, the quadratic residue codes. Chapter 7 returns to BCH codes. [1] [6] After these discussions of specific codes, the next chapter concerns enumerator polynomials, including the MacWilliams identities, Pless's own power moment identities, and the Gleason ...
Lexicographic code; List decoding; Locally decodable code; Locally recoverable code; Locally testable code; Long code (mathematics) Longitudinal redundancy check; Low-density parity-check code; Luhn algorithm
As mentioned above, there are a vast number of error-correcting codes that are actually block codes. The first error-correcting code was the Hamming(7,4) code, developed by Richard W. Hamming in 1950. This code transforms a message consisting of 4 bits into a codeword of 7 bits by adding 3 parity bits. Hence this code is a block code.
If the channel quality is bad, and not all transmission errors can be corrected, the receiver will detect this situation using the error-detection code, then the received coded data block is rejected and a re-transmission is requested by the receiver, similar to ARQ.
As with codes using hamming distance, AN codes can correct up to ⌊ ⌋ errors where is the distance of the code. For example, an AN code with A = 3 {\displaystyle A=3} , the operation of adding 15 {\displaystyle 15} and 16 {\displaystyle 16} will start by encoding both operands.
By adding redundancy with coding k-symbol word to a n-symbol word, a rank code can correct any errors of rank up to t = ⌊ (d − 1) / 2 ⌋, where d is a code distance. As an erasure code , it can correct up to d − 1 known erasures.