When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Incompressible flow - Wikipedia

    en.wikipedia.org/wiki/Incompressible_flow

    In fluid dynamics, a flow is considered incompressible if the divergence of the flow velocity is zero. However, related formulations can sometimes be used, depending on the flow system being modelled. Some versions are described below: Incompressible flow: =. This can assume either constant density (strict incompressible) or varying density flow.

  3. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    Therefore, the continuity equation for an incompressible fluid reduces further to: = This relationship, =, identifies that the divergence of the flow velocity vector is equal to zero (), which means that for an incompressible fluid the flow velocity field is a solenoidal vector field or a divergence-free vector field.

  4. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    If the fluid is incompressible (volumetric strain rate is zero), the mass continuity equation simplifies to a volume continuity equation: [3] =, which means that the divergence of the velocity field is zero everywhere. Physically, this is equivalent to saying that the local volume dilation rate is zero, hence a flow of water through a ...

  5. Stream function - Wikipedia

    en.wikipedia.org/wiki/Stream_function

    The velocity satisfies the continuity equation for incompressible flow: ∇ ⋅ u = 0. {\displaystyle \quad \nabla \cdot \mathbf {u} =0.} Although in principle the stream function doesn't require the use of a particular coordinate system, for convenience the description presented here uses a right-handed Cartesian coordinate system with ...

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).

  7. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible Navier–Stokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.

  8. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The flow speed of a fluid can be measured using a device such as a Venturi meter or an orifice plate, which can be placed into a pipeline to reduce the diameter of the flow. For a horizontal device, the continuity equation shows that for an incompressible fluid, the reduction in diameter will cause an increase in the fluid flow speed.

  9. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    These equations can be used with approximations based on knowledge of the properties of flow turbulence to give approximate time-averaged solutions to the Navier–Stokes equations. For a stationary flow of an incompressible Newtonian fluid, these equations can be written in Einstein notation in Cartesian coordinates as