Search results
Results From The WOW.Com Content Network
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
Iterators constitute alternative language constructs to loops, which ensure consistent iterations over specific data structures. They can eventually save time and effort in later coding attempts. In particular, an iterator allows one to repeat the same kind of operation at each node of such a data structure, often in some pre-defined order.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
In version 2.2 of Python, "new-style" classes were introduced. With new-style classes, objects and types were unified, allowing the subclassing of types. Even entirely new types can be defined, complete with custom behavior for infix operators. This allows for many radical things to be done syntactically within Python.
Since these methods form a basis, it is evident that the method converges in N iterations, where N is the system size. However, in the presence of rounding errors this statement does not hold; moreover, in practice N can be very large, and the iterative process reaches sufficient accuracy already far earlier.
Specifically, while both can yield multiple times, suspending their execution and allowing re-entry at multiple entry points, they differ in coroutines' ability to control where execution continues immediately after they yield, while generators cannot, instead transferring control back to the generator's caller. [9]