When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cartesian product of graphs - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product_of_graphs

    The Cartesian product of two path graphs is a grid graph. The Cartesian product of n edges is a hypercube: =. Thus, the Cartesian product of two hypercube graphs is another hypercube: Q i Q j = Q i+j. The Cartesian product of two median graphs is another median graph. The graph of vertices and edges of an n-prism is the Cartesian product graph ...

  3. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  4. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    In graph theory, the Cartesian product of two graphs G and H is the graph denoted by G × H, whose vertex set is the (ordinary) Cartesian product V(G) × V(H) and such that two vertices (u,v) and (u′,v′) are adjacent in G × H, if and only if u = u′ and v is adjacent with v ′ in H, or v = v′ and u is adjacent with u ′ in G.

  5. Graph operations - Wikipedia

    en.wikipedia.org/wiki/Graph_operations

    graph products based on the cartesian product of the vertex sets: cartesian graph product : it is a commutative and associative operation (for unlabelled graphs), [ 2 ] lexicographic graph product (or graph composition): it is an associative (for unlabelled graphs) and non-commutative operation, [ 2 ]

  6. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    In the category of groups, the product is the direct product of groups given by the Cartesian product with multiplication defined componentwise. In the category of graphs, the product is the tensor product of graphs. In the category of relations, the product is given by the disjoint union.

  7. Tensor product of graphs - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_graphs

    The tensor product of graphs. In graph theory, the tensor product G × H of graphs G and H is a graph such that the vertex set of G × H is the Cartesian product V(G) × V(H); and; vertices (g,h) and (g',h' ) are adjacent in G × H if and only if. g is adjacent to g' in G, and; h is adjacent to h' in H.

  8. Hamming graph - Wikipedia

    en.wikipedia.org/wiki/Hamming_graph

    The Hamming graph H(d,q) has vertex set S d, the set of ordered d-tuples of elements of S, or sequences of length d from S. Two vertices are adjacent if they differ in precisely one coordinate; that is, if their Hamming distance is one. The Hamming graph H(d,q) is, equivalently, the Cartesian product of d complete graphs K q. [1]

  9. Category:Graph products - Wikipedia

    en.wikipedia.org/wiki/Category:Graph_products

    Cartesian product of graphs; H. Hedetniemi's conjecture; L. Lexicographic product of graphs; M. Min-plus matrix multiplication; Modular product of graphs; R ...