Search results
Results From The WOW.Com Content Network
A CMOS transistor NAND element. V dd denotes positive voltage.. In CMOS logic, if both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path will be established between the output and Vss (ground), bringing the output low.
In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results.
The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.
The 3-input Fredkin gate is functionally complete reversible gate by itself – a sole sufficient operator. There are many other three-input universal logic gates, such as the Toffoli gate . In quantum computing , the Hadamard gate and the T gate are universal, albeit with a slightly more restrictive definition than that of functional completeness.
This schematic diagram shows the arrangement of NOT gates within a standard 4049 CMOS hex inverting buffer. The inverter is a basic building block in digital electronics. Multiplexers, decoders, state machines, and other sophisticated digital devices may use inverters. The hex inverter is an integrated circuit that contains six inverters.
Due to the functional completeness property of the NAND and NOR gates, a full adder can also be implemented using nine NAND gates, [4] or nine NOR gates. Using only two types of gates is convenient if the circuit is being implemented using simple integrated circuit chips which contain only one gate type per chip.
The transformation is easy to describe if the circuit is wholly constructed out of 2-input NAND gates (a functionally-complete set of Boolean operators): assign every net in the circuit a variable, then for each NAND gate, construct the conjunctive normal form clauses (v 1 ∨ v 3) ∧ (v 2 ∨ v 3) ∧ (¬v 1 ∨ ¬v 2 ∨ ¬v 3), where v 1 ...
A NOT gate, for example, can be constructed from a Toffoli gate by setting the three input bits to {a, 1, 1}, making the third output bit (1 XOR (a AND 1)) = NOT a; (a AND b) is the third output bit from {a, b, 0}. Essentially, this means that one can use Toffoli gates to build systems that will perform any desired Boolean function computation ...