When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/HosmerLemeshow_test

    The HosmerLemeshow test is a statistical test for goodness of fit and calibration for logistic regression models. It is used frequently in risk prediction models. The test assesses whether or not the observed event rates match expected event rates in subgroups of the model population.

  3. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is a supervised machine learning algorithm widely used for binary classification tasks, such as identifying whether an email is spam or not and diagnosing diseases by assessing the presence or absence of specific conditions based on patient test results. This approach utilizes the logistic (or sigmoid) function to transform ...

  4. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    Kolmogorov–Smirnov test; Cramér–von Mises criterion; Anderson–Darling test; Berk-Jones tests [1] [2] Shapiro–Wilk test; Chi-squared test; Akaike information criterion; HosmerLemeshow test; Kuiper's test; Kernelized Stein discrepancy [3] [4] Zhang's Z K, Z C and Z A tests [5] Moran test; Density Based Empirical Likelihood Ratio tests [6]

  5. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable.

  6. pytest - Wikipedia

    en.wikipedia.org/wiki/Pytest

    Pytest is a Python testing framework that originated from the PyPy project. It can be used to write various types of software tests, including unit tests, integration tests, end-to-end tests, and functional tests.

  7. Wald test - Wikipedia

    en.wikipedia.org/wiki/Wald_test

    There are several reasons to prefer the likelihood ratio test or the Lagrange multiplier to the Wald test: [18] [19] [20] Non-invariance: As argued above, the Wald test is not invariant under reparametrization, while the likelihood ratio tests will give exactly the same answer whether we work with R, log R or any other monotonic transformation ...

  8. Logit-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Logit-normal_distribution

    In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.

  9. Conway–Maxwell–Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Conway–Maxwell–Poisson...

    In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.