When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    Apply dynamic programming to this path decomposition to find a longest path in time (!), where is the number of vertices in the graph. Since the output path has length at least as large as d {\displaystyle d} , the running time is also bounded by O ( ℓ ! 2 ℓ n ) {\displaystyle O(\ell !2^{\ell }n)} , where ℓ {\displaystyle \ell } is the ...

  4. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    After corresponding edges are added (red), the length of the Eulerian circuit is found. In graph theory and combinatorial optimization , Guan's route problem , the Chinese postman problem , postman tour or route inspection problem is to find a shortest closed path or circuit that visits every edge of an (connected) undirected graph at least once.

  5. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    By the triangle inequality, the best Eulerian graph must have the same cost as the best travelling salesman tour; hence, finding optimal Eulerian graphs is at least as hard as TSP. One way of doing this is by minimum weight matching using algorithms with a complexity of O ( n 3 ) {\displaystyle O(n^{3})} .

  6. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    In fact in order to answer a level ancestor query, the algorithm needs to jump from a path to another until it reaches the root and there could be Θ(√ n) of such paths on a leaf-to-root path. This leads us to an algorithm that can pre-process the tree in O( n ) time and answers queries in O( √ n ).

  7. Pointer jumping - Wikipedia

    en.wikipedia.org/wiki/Pointer_jumping

    Pointer jumping or path doubling is a design technique for parallel algorithms that operate on pointer structures, such as linked lists and directed graphs. Pointer jumping allows an algorithm to follow paths with a time complexity that is logarithmic with respect to the length of the longest path.

  8. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    Every three-digit sequence occurs exactly once if one visits every vertex exactly once (a Hamiltonian path). The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n-dimensional de Bruijn graph over k symbols (or equivalently, an Eulerian cycle of an (n − 1)-dimensional de Bruijn graph). [5]

  9. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    Motion planning, also path planning (also known as the navigation problem or the piano mover's problem) is a computational problem to find a sequence of valid configurations that moves the object from the source to destination.