Search results
Results From The WOW.Com Content Network
The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ . The resulting curve then consists of points of the form ( r ( φ ), φ ) and can be regarded as the graph of the polar function r .
Let φ 1 = 0, φ 2 = 2π; then the area of the black region (see diagram) is A 0 = a 2 π 2, which is half of the area of the circle K 0 with radius r(2π). The regions between neighboring curves (white, blue, yellow) have the same area A = 2a 2 π 2. Hence: The area between two arcs of the spiral after a full turn equals the area of the circle ...
A polar coordinate system is a curvilinear system where coordinate curves are lines or circles. However, one of the coordinate curves is reduced to a single point, the origin, which is often viewed as a circle of radius zero. Similarly, spherical and cylindrical coordinate systems have coordinate curves that are lines, circles or circles of ...
The Lobachevsky coordinates are useful for integration for length of curves [2] and area between lines and curves. [example needed] Lobachevsky coordinates are named after Nikolai Lobachevsky one of the discoverers of hyperbolic geometry. Circles about the origin of radius 1, 5 and 10 in the Lobachevsky hyperbolic coordinates.
A vector v (red) represented by • a vector basis (yellow, left: e 1, e 2, e 3), tangent vectors to coordinate curves (black) and • a covector basis or cobasis (blue, right: e 1, e 2, e 3), normal vectors to coordinate surfaces (grey) in general (not necessarily orthogonal) curvilinear coordinates (q 1, q 2, q 3). The basis and cobasis do ...
The key difference between Fermat's and Descartes' treatments is a matter of viewpoint: Fermat always started with an algebraic equation and then described the geometric curve that satisfied it, whereas Descartes started with geometric curves and produced their equations as one of several properties of the curves. [12]
In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F 1 and F 2, known as foci, at distance 2c from each other as the locus of points P so that PF 1 ·PF 2 = c 2. The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ...
Using either one of the polar representations above, the area of the interior of the loop is found to be /. Moreover, the area between the "wings" of the curve and its slanted asymptote is also 3 a 2 / 2 {\displaystyle 3a^{2}/2} .