Search results
Results From The WOW.Com Content Network
= 6,371.009 kilometers = 3,958.761 statute miles = 3,440.069 nautical miles. = Distance between the two points, as measured along the surface of the Earth and in the same units as the value used for radius unless specified otherwise.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
More importantly, the radius of curvature of a north-south line on the earth's surface is 1% greater at the poles (≈6399.594 km) than at the equator (≈6335.439 km)—so the haversine formula and law of cosines cannot be guaranteed correct to better than 0.5%.
using SI units of meters for , hertz (s −1) for , and meters per second (m⋅s −1) for , (where c=299 792 458 m/s in vacuum, ≈ 300 000 km/s) For typical radio applications, it is common to find d {\displaystyle d} measured in kilometers and f {\displaystyle f} in gigahertz , in which case the FSPL equation becomes
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
If the initial point is at the North or South pole, then the first equation is indeterminate. If the initial azimuth is due East or West, then the second equation is indeterminate. If the standard 2-argument arctangent atan2 function is used, then these values are usually handled correctly. [clarification needed]
When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...
The kilometre (SI symbol: km; / ˈ k ɪ l ə m iː t ər / or / k ɪ ˈ l ɒ m ə t ər /), spelt kilometer in American and Philippine English, is a unit of length in the International System of Units (SI), equal to one thousand metres (kilo-being the SI prefix for 1000).