When.com Web Search

  1. Ads

    related to: how does ai interpret data in statistics and examples

Search results

  1. Results From The WOW.Com Content Network
  2. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  3. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  5. Analytics - Wikipedia

    en.wikipedia.org/wiki/Analytics

    Analytics is the systematic computational analysis of data or statistics. [1] It is used for the discovery, interpretation, and communication of meaningful patterns in data, which also falls under and directly relates to the umbrella term, data science. [2] Analytics also entails applying data patterns toward effective decision-making.

  6. Augmented Analytics - Wikipedia

    en.wikipedia.org/wiki/Augmented_Analytics

    Business – Businesses collect large amounts of data, daily. Some examples of types of data collected in business operations include; sales data, consumer behavior data, distribution data. An augmented analytics platform provides access to analysis of this data, which could be used in making business decisions. [1]

  7. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition, classification, and regression tasks.