Search results
Results From The WOW.Com Content Network
That is, x ∈ lim sup X n if and only if there exists a subsequence (X n k) of (X n) such that x ∈ X n k for all k. lim inf X n consists of elements of X which belong to X n for all except finitely many n (i.e., for cofinitely many n). That is, x ∈ lim inf X n if and only if there exists some m > 0 such that x ∈ X n for all n > m.
A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instance lim x → 0 1 / x 2 = ∞ , {\textstyle \lim _{x\to 0}1/x^{2}=\infty ,} is not considered ...
If () for all x in an interval that contains c, except possibly c itself, and the limit of () and () both exist at c, then [5] () If lim x → c f ( x ) = lim x → c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) ≤ g ( x ) ≤ h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that ...
This sequence converges uniformly on S to the zero function and the limit, 0, is reached in a finite number of steps: for every x ≥ 0, if n > x, then f n (x) = 0. However, every function f n has integral −1. Contrary to Fatou's lemma, this value is strictly less than the integral of the limit (0).
If X is the continuous dual space of some other Banach space Y, then X is said to have the weak-∗ Opial property if, whenever (x n) n∈N is a sequence in X converging weakly-∗ to some x 0 ∈ X and x ≠ x 0, it follows that
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
AOL Promotions. You’ll no longer see paid ads, but you’ll continue to see promotions for AOL products and brands. We want to keep you in-the-know of our latest product news and information.
On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges ...