Search results
Results From The WOW.Com Content Network
A stochastic investment model tries to forecast how returns and prices on different assets or asset classes, (e. g. equities or bonds) vary over time. Stochastic models are not applied for making point estimation rather interval estimation and they use different stochastic processes .
In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. [1] It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.
Starting from a constant volatility approach, assume that the derivative's underlying asset price follows a standard model for geometric Brownian motion: = + where is the constant drift (i.e. expected return) of the security price , is the constant volatility, and is a standard Wiener process with zero mean and unit rate of variance.
Alternatively, Guerrero and Orlando [7] show that a time-dependent local stochastic volatility (SLV) model can be reduced to a system of autonomous PDEs that can be solved using the heat kernel, by means of the Wei-Norman factorization method and Lie algebraic techniques. Explicit solutions obtained by said techniques are comparable to ...
Dynamic stochastic general equilibrium modeling (abbreviated as DSGE, or DGE, or sometimes SDGE) is a macroeconomic method which is often employed by monetary and fiscal authorities for policy analysis, explaining historical time-series data, as well as future forecasting purposes. [1]
Stochastic frontier analysis has examined also "cost" and "profit" efficiency. [2] The "cost frontier" approach attempts to measure how far from full-cost minimization (i.e. cost-efficiency) is the firm. Modeling-wise, the non-negative cost-inefficiency component is added rather than subtracted in the stochastic specification.
Stochastic optimization (SO) are optimization methods that generate and use random variables. For stochastic optimization problems, the objective functions or constraints are random. Stochastic optimization also include methods with random iterates .
The model specifies that the instantaneous interest rate follows the stochastic differential equation: d r t = a ( b − r t ) d t + σ d W t {\displaystyle dr_{t}=a(b-r_{t})\,dt+\sigma \,dW_{t}} where W t is a Wiener process under the risk neutral framework modelling the random market risk factor, in that it models the continuous inflow of ...