When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    2.7 Cross product rule. ... Download as PDF; Printable version; ... in three-dimensional Cartesian coordinate variables, the gradient is the vector field: ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    This product of vectors a, and b produces two terms: a scalar part from the inner product and a bivector part from the wedge product. This bivector describes the plane perpendicular to what the cross product of the vectors would return. Bivectors in GA have some unusual properties compared to vectors.

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The following three basic rotation matrices rotate vectors by an angle θ about the x-, y-, or z-axis, in three dimensions, using the right-hand rule—which codifies their alternating signs. Notice that the right-hand rule only works when multiplying R ⋅ x → {\displaystyle R\cdot {\vec {x}}} .

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Seven-dimensional cross product - Wikipedia

    en.wikipedia.org/.../Seven-dimensional_cross_product

    The seven-dimensional cross product has the same relationship to the octonions as the three-dimensional product does to the quaternions. The seven-dimensional cross product is one way of generalizing the cross product to other than three dimensions, and it is the only other bilinear product of two vectors that is vector-valued, orthogonal, and ...

  9. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    where {e 1 ∧ e 2, e 3 ∧ e 1, e 2 ∧ e 3} is the basis for the three-dimensional space ⋀ 2 (R 3). The coefficients above are the same as those in the usual definition of the cross product of vectors in three dimensions, the only difference being that the exterior product is not an ordinary vector, but instead is a bivector. Bringing in a ...