Ads
related to: exponential function examples with answers
Search results
Results From The WOW.Com Content Network
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = () = for every b > 0.
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
The resulting object is called an exponential ring. [2] An example of an exponential ring with a nontrivial exponential function is the ring of integers Z equipped with the function E which takes the value +1 at even integers and −1 at odd integers, i.e., the function ().
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).
Exponential dispersion model; Exponential distribution; Exponential error; Exponential factorial; Exponential family; Exponential field; Exponential formula; Exponential function; Exponential generating function; Exponential-Golomb coding; Exponential growth; Exponential hierarchy; Exponential integral; Exponential integrator; Exponential map ...
For example, if the initial population of the assembly, N(0), is 1000, then the population at time , (), is 368. A very similar equation will be seen below, which arises when the base of the exponential is chosen to be 2, rather than e. In that case the scaling time is the "half-life".