Search results
Results From The WOW.Com Content Network
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...
This is a list of surfaces in mathematics. They are divided into minimal surfaces , ruled surfaces , non-orientable surfaces , quadrics , pseudospherical surfaces , algebraic surfaces , and other types of surfaces.
A hyperboloid is a quadric surface, that is, a surface defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, a hyperboloid is characterized by not being a cone or a cylinder, having a center of symmetry, and intersecting many planes into hyperbolas.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A sphere is the surface of a solid ball, here having radius r. In mathematics, a surface is a mathematical model of the common concept of a surface.It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.
Quotient surfaces, surfaces that are constructed as the orbit space of some other surface by the action of a finite group; examples include Kummer, Godeaux, Hopf, and Inoue surfaces; Zariski surfaces, surfaces in finite characteristic that admit a purely inseparable dominant rational map from the projective plane
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers , an algebraic surface has complex dimension two (as a complex manifold , when it is non-singular ) and so of dimension four as a smooth manifold .