When.com Web Search

  1. Ad

    related to: finding coefficient of remainder theorem examples

Search results

  1. Results From The WOW.Com Content Network
  2. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    The Chinese remainder theorem is widely used for computing with large integers, as it allows replacing a computation for which one knows a bound on the size of the result by several similar computations on small integers. The Chinese remainder theorem (expressed in terms of congruences) is true over every principal ideal domain.

  3. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem. The factor theorem is another application of the remainder theorem: if the remainder is zero, then the linear divisor is a factor. Repeated application of the factor theorem may be used to factorize the polynomial. [3]

  4. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    When the denominator b(x) is monic and linear, that is, b(x) = x − c for some constant c, then the polynomial remainder theorem asserts that the remainder of the division of a(x) by b(x) is the evaluation a(c). [18] In this case, the quotient may be computed by Ruffini's rule, a special case of synthetic division. [20]

  6. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2. Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem, result from Bézout's identity.

  7. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    Animation showing the use of synthetic division to find the quotient of + + + by .Note that there is no term in , so the fourth column from the right contains a zero.. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division.

  8. Lucas's theorem - Wikipedia

    en.wikipedia.org/wiki/Lucas's_theorem

    Lucas's theorem can be generalized to give an expression for the remainder when () is divided by a prime power p k.However, the formulas become more complicated. If the modulo is the square of a prime p, the following congruence relation holds for all 0 ≤ s ≤ r ≤ p − 1, a ≥ 0, and b ≥ 0.

  9. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    One can use linear algebra, by taking the coefficients of the interpolating polynomial as unknowns, and writing as linear equations the constraints that the interpolating polynomial must satisfy. For another method, see Chinese remainder theorem § Hermite interpolation. For yet another method, see, [1] which uses contour integration.