Ad
related to: finding coefficient of remainder theorem problems
Search results
Results From The WOW.Com Content Network
The b values are the coefficients of the result (R(x)) polynomial, the degree of which is one less than that of P(x). The final value obtained, s, is the remainder. The polynomial remainder theorem asserts that the remainder is equal to P(r), the value of the polynomial at r.
The Chinese remainder theorem is widely used for computing with large integers, as it allows replacing a computation for which one knows a bound on the size of the result by several similar computations on small integers. The Chinese remainder theorem (expressed in terms of congruences) is true over every principal ideal domain.
Hermite interpolation problems are those where not only the values of the polynomial p at the nodes are given, but also all derivatives up to a given order. This turns out to be equivalent to a system of simultaneous polynomial congruences, and may be solved by means of the Chinese remainder theorem for polynomials.
This construction is analogous to the Chinese remainder theorem. Instead of checking for remainders of integers modulo prime numbers, we are checking for remainders of polynomials when divided by linears. Furthermore, when the order is large, Fast Fourier transformation can be used to solve for the coefficients of the interpolated polynomial.
The quotient and remainder may be computed by any of several algorithms, including polynomial long division and synthetic division. [19] When the denominator b(x) is monic and linear, that is, b(x) = x − c for some constant c, then the polynomial remainder theorem asserts that the remainder of the division of a(x) by b(x) is the evaluation a ...
In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each different prime number.
Animation showing the use of synthetic division to find the quotient of + + + by .Note that there is no term in , so the fourth column from the right contains a zero.. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division.
As a consequence of the polynomial remainder theorem, the entries in the third row are the coefficients of the second-degree polynomial, the quotient of () on division by . The remainder is 5. This makes Horner's method useful for polynomial long division.