Search results
Results From The WOW.Com Content Network
The density of air or atmospheric density, denoted ρ, [1] is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. Air density, like air pressure, decreases with increasing altitude.
The qualities of arctic air are developed over ice and snow-covered ground. Arctic air is deeply cold, colder than polar air masses. Arctic air can be shallow in the summer, and rapidly modify as it moves equatorward. [8] Polar air masses develop over higher latitudes over the land or ocean, are very stable, and generally shallower than arctic air.
The density of air at sea level is about 1.2 kg/m 3 (1.2 g/L, 0.0012 g/cm 3). Density is not measured directly but is calculated from measurements of temperature, pressure and humidity using the equation of state for air (a form of the ideal gas law). Atmospheric density decreases as the altitude increases.
at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1). The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles.
Comparison of the 1962 US Standard Atmosphere graph of geometric altitude against air density, pressure, the speed of sound and temperature with approximate altitudes of various objects. [ 1 ] The U.S. Standard Atmosphere is a static atmospheric model of how the pressure , temperature , density , and viscosity of the Earth's atmosphere change ...
If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may still continue. On weather maps, the surface location of a warm front is marked with a red line of semicircles pointing in the direction the air mass is travelling. [2]
The rising air creates a low pressure zone near the equator. As the air moves poleward, it cools, becomes denser, and descends at about the 30th parallel, creating a high-pressure area. The descended air then travels toward the equator along the surface, replacing the air that rose from the equatorial zone, closing the loop of the Hadley cell. [3]
For this reason, this model may also be called barotropic (density depends only on pressure). For the isothermal-barotropic model, density and pressure turn out to be exponential functions of altitude. The increase in altitude necessary for P or ρ to drop to 1/e of its initial value is called the scale height: