Search results
Results From The WOW.Com Content Network
The term power standing wave ratio (PSWR) is sometimes referred to, and defined as, the square of the voltage standing wave ratio. The term is widely cited as "misleading". [11] The expression "power standing-wave ratio", which may sometimes be encountered, is even more misleading, for the power distribution along a loss-free line is constant. ...
An SWR meter does not measure the actual impedance of a load (the resistance and reactance), but only the mismatch ratio. To measure the actual impedance requires an antenna analyzer or other similar RF measuring device. For accurate readings, the SWR meter itself must also match the line's impedance (typically 50 or 75 Ohms).
Switching between different resistances forms adjustable stepped attenuators and continuously adjustable ones using potentiometers. For higher frequencies precisely matched low voltage standing wave ratio (VSWR) resistance networks are used. Fixed attenuators in circuits are used to lower voltage, dissipate power, and to improve impedance matching.
The voltage standing wave ratio (VSWR) at a port, represented by the lower case 's', is a similar measure of port match to return loss but is a scalar linear quantity, the ratio of the standing wave maximum voltage to the standing wave minimum voltage.
Standing wave ratio (SWR or VSWR) is a basic parameter and the one most commonly measured on a slotted line. This quantity is of particular importance for transmitter antennae. A high SWR indicates a poor match between the feed line and the antenna, which increases wasted power, can cause damage to components in the transmission path, possibly ...
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
The impedance match between the feedline and antenna is measured by a parameter called the standing wave ratio (SWR) on the feedline. Consider a half-wave dipole designed to work with signals with wavelength 1 m, meaning the antenna would be approximately 50 cm from tip to tip.
A link budget is an accounting of all of the power gains and losses that a communication signal experiences in a telecommunication system; from a transmitter, through a communication medium such as radio waves, cable, waveguide, or optical fiber, to the receiver.