Search results
Results From The WOW.Com Content Network
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
Linear inequality. In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than. > greater than. ≤ less than or equal to. ≥ greater than or equal to. ≠ not equal to.
Delta operator. In mathematics, a delta operator is a shift-equivariant linear operator on the vector space of polynomials in a variable over a field that reduces degrees by one. To say that is shift-equivariant means that if , then. In other words, if is a "shift" of , then is also a shift of , and has the same "shifting vector" .
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than (<) and greater than (>).
The expression on the right side of the "=" sign is the right side of the equation and the expression on the left of the "=" is the left side of the equation. For example, in. x + 5 is the left-hand side (LHS) and y + 8 is the right-hand side (RHS).
Operator (mathematics) In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions ...
The triangle inequality is a defining property of norms and measures of distance. This property must be established as a theorem for any function proposed for such purposes for each particular space: for example, spaces such as the real numbers, Euclidean spaces, the L p spaces (p ≥ 1), and inner product spaces.
Definition. The Laplace operator is a second-order differential operator in the n -dimensional Euclidean space, defined as the divergence ( ) of the gradient ( ). Thus if is a twice-differentiable real-valued function, then the Laplacian of is the real-valued function defined by: {\displaystyle \Delta f=\nabla ^ {2}f=\nabla \cdot \nabla f}