Search results
Results From The WOW.Com Content Network
Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers and the set of rational numbers are both countably infinite and therefore are null sets when considered as subsets of the real numbers. The Cantor set is an example of an uncountable null set. [further explanation needed]
Power set of a set A, denoted (), is the set whose members are all of the possible subsets of A. For example, the power set of {1, 2} is { {}, {1}, {2}, {1, 2} }. Some basic sets of central importance are the set of natural numbers, the set of real numbers and the empty set—the unique set containing no elements.
The empty set is the set containing no elements. In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. [1] Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
In axiomatic set theory, the axiom of empty set, [1][2] also called the axiom of null set[3] and the axiom of existence, [4][5] is a statement that asserts the existence of a set with no elements. [3] It is an axiom of Kripke–Platek set theory and the variant of general set theory that Burgess (2005) calls "ST," and a demonstrable truth in ...
In Zermelo–Fraenkel (ZF) set theory, the natural numbers are defined recursively by letting 0 = {} be the empty set and n + 1 (the successor function) = n ∪ {n} for each n. In this way n = {0, 1, …, n − 1} for each natural number n. This definition has the property that n is a set with n elements. The first few numbers defined this way ...
The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.
The set of all subsets of a given set A is called the power set of A and is denoted by or (); the "P" is sometimes in a script font: ℘ . If the set A has n elements, then P ( A ) {\displaystyle P(A)} will have 2 n {\displaystyle 2^{n}} elements.