Search results
Results From The WOW.Com Content Network
Base64 encoding can be helpful when fairly lengthy identifying information is used in an HTTP environment. For example, a database persistence framework for Java objects might use Base64 encoding to encode a relatively large unique id (generally 128-bit UUIDs) into a string for use as an HTTP parameter in HTTP forms or HTTP GET URLs. Also, many ...
For example, PKIX uses such notation in RFC 5912. With such notation (constraints on parameterized types using information object sets), generic ASN.1 tools/libraries can automatically encode/decode/resolve references within a document. ^ The primary format is binary, a json encoder is available. [10]
The ASCII text-encoding standard uses 7 bits to encode characters. With this it is possible to encode 128 (i.e. 2 7) unique values (0–127) to represent the alphabetic, numeric, and punctuation characters commonly used in English, plus a selection of Control characters which do not represent printable characters.
The 53-bit significand precision gives from 15 to 17 significant decimal digits precision (2 −53 ≈ 1.11 × 10 −16). If a decimal string with at most 15 significant digits is converted to the IEEE 754 double-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final ...
Therefore, a word of n bytes can contain up to (2n)−1 decimal digits, which is always an odd number of digits. A decimal number with d digits requires 1 / 2 (d+1) bytes of storage space. For example, a 4-byte (32-bit) word can hold seven decimal digits plus a sign and can represent values ranging from ±9,999,999.
Therefore, binary quantities are written in a base-8, or "octal", or, much more commonly, a base-16, "hexadecimal" (hex), number format. In the decimal system, there are 10 digits, 0 through 9, which combine to form numbers. In an octal system, there are only 8 digits, 0 through 7.
With the VLQ encoding described above, any number that can be encoded with N octets can also be encoded with more than N octets simply by prepending additional 0x80 octets as zero-padding. For example, the decimal number 358 can be encoded as the 2-octet VLQ 0x8266, or the number 0358 can be encoded as 3-octet VLQ 0x808266, or 00358 as the 4 ...
The message is encoded in the fraction 0.538 (using decimal for clarity, instead of binary; also assuming that there are only as many digits as needed to decode the message.) The process starts with the same interval used by the encoder: [0,1), and using the same model, dividing it into the same four sub-intervals that the encoder must have.