When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. Conditional logistic regression - Wikipedia

    en.wikipedia.org/wiki/Conditional_logistic...

    It is in the survival package because the log likelihood of a conditional logistic model is the same as the log likelihood of a Cox model with a particular data structure. [3] It is also available in python through the statsmodels package starting with version 0.14. [4]

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...

  5. scikit-multiflow - Wikipedia

    en.wikipedia.org/wiki/Scikit-multiflow

    The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...

  6. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    It is based on a condition known as the Armijo–Goldstein condition. Both methods allow learning rates to change at each iteration; however, the manner of the change is different. Backtracking line search uses function evaluations to check Armijo's condition, and in principle the loop in the algorithm for determining the learning rates can be ...

  8. Latent Dirichlet allocation - Wikipedia

    en.wikipedia.org/wiki/Latent_Dirichlet_allocation

    Related models and techniques are, among others, latent semantic indexing, independent component analysis, probabilistic latent semantic indexing, non-negative matrix factorization, and Gamma-Poisson distribution. The LDA model is highly modular and can therefore be easily extended. The main field of interest is modeling relations between topics.

  9. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    These models have the generality to distinguish the type of entity and relation, temporal information, path information, underlay structured information, [18] and resolve the limitations of distance-based and semantic-matching-based models in representing all the features of a knowledge graph. [1] The use of deep learning for knowledge graph ...