Search results
Results From The WOW.Com Content Network
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
Parallelogons have an even number of sides and opposite sides that are equal in length. A less obvious corollary is that parallelogons can only have either four or six sides; [1] Parallelogons have 180-degree rotational symmetry around the center. A four-sided parallelogon is called a parallelogram.
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
A planar Varignon parallelogram also has the following properties: Each pair of opposite sides of the Varignon parallelogram are parallel to a diagonal in the original quadrilateral. A side of the Varignon parallelogram is half as long as the diagonal in the original quadrilateral it is parallel to.
In mathematics, the simplest form of the parallelogram law (also called the parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals. We use these notations for the sides: AB, BC, CD, DA.
An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).
Twice the length of the bimedian connecting the midpoints of two opposite sides equals the sum of the lengths of the other sides. [16]: p. 31 Additionally, the following properties are equivalent, and each implies that opposite sides a and b are parallel: The consecutive sides a, c, b, d and the diagonals p, q satisfy the equation [16]: Cor.11
Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, each pair of sides is antiparallel with respect to the other, with sides in the longer pair crossing each other as in a scissors mechanism. Whereas a parallelogram's opposite angles are equal ...