When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    A golden rectangle—that is, a rectangle with an aspect ratio of ⁠ ⁠ —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural objects and artificial systems such as financial markets , in some cases based on dubious fits to data. [ 8 ]

  3. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    For example, the perimeter of a rectangle of width 0.001 and length 1000 is slightly above 2000, while the perimeter of a rectangle of width 0.5 and length 2 is 5. Both areas are equal to 1. Proclus (5th century) reported that Greek peasants "fairly" parted fields relying on their perimeters. [ 2 ]

  4. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    A root-phi rectangle divides into a pair of Kepler triangles (right triangles with edge lengths in geometric progression). The root-φ rectangle is a dynamic rectangle but not a root rectangle. Its diagonal equals φ times the length of the shorter side. If a root-φ rectangle is divided by a diagonal, the result is two congruent Kepler triangles.

  5. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  6. Equable shape - Wikipedia

    en.wikipedia.org/wiki/Equable_shape

    The only equable rectangles with integer sides are the 4 × 4 square and the 3 × 6 rectangle. [4] An integer rectangle is a special type of polyomino, and more generally there exist polyominoes with equal area and perimeter for any even integer area greater than or equal to 16. For smaller areas, the perimeter of a polyomino must exceed its area.

  7. Babylonian mathematics - Wikipedia

    en.wikipedia.org/wiki/Babylonian_mathematics

    Problems of this type included finding the dimensions of a rectangle given its area and the amount by which the length exceeds the width. Tables of values of n 3 + n 2 were used to solve certain cubic equations. For example, consider the equation: + =. Multiplying the equation by a 2 and dividing by b 3 gives:

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]