When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scale-space axioms - Wikipedia

    en.wikipedia.org/wiki/Scale-space_axioms

    Once established, the axioms narrow the possible scale-space representations to a smaller class, typically with only a few free parameters. A set of standard scale space axioms, discussed below, leads to the linear Gaussian scale-space, which is the most common type of scale space used in image processing and computer vision.

  3. Multi-scale approaches - Wikipedia

    en.wikipedia.org/wiki/Multi-scale_approaches

    From this classification, it is apparent that we require a continuous semi-group structure, there are only three classes of scale-space kernels with a continuous scale parameter; the Gaussian kernel which forms the scale-space of continuous signals, the discrete Gaussian kernel which forms the scale-space of discrete signals and the time-causal ...

  4. Gaussian kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    A kernel smoother is a statistical technique to estimate a real valued function: as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter.

  5. Scale space implementation - Wikipedia

    en.wikipedia.org/wiki/Scale_space_implementation

    In the areas of computer vision, image analysis and signal processing, the notion of scale-space representation is used for processing measurement data at multiple scales, and specifically enhance or suppress image features over different ranges of scale (see the article on scale space).

  6. Scale space - Wikipedia

    en.wikipedia.org/wiki/Scale_space

    For temporal smoothing in real-time situations, one can instead use the temporal kernel referred to as the time-causal limit kernel, [71] which possesses similar properties in a time-causal situation (non-creation of new structures towards increasing scale and temporal scale covariance) as the Gaussian kernel obeys in the non-causal case. The ...

  7. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    Multiple kernel learning can also be used as a form of nonlinear variable selection, or as a model aggregation technique (e.g. by taking the sum of squared norms and relaxing sparsity constraints). For example, each kernel can be taken to be the Gaussian kernel with a different width.

  8. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    Low-rank matrix approximations are essential tools in the application of kernel methods to large-scale learning problems. [1]Kernel methods (for instance, support vector machines or Gaussian processes [2]) project data points into a high-dimensional or infinite-dimensional feature space and find the optimal splitting hyperplane.

  9. Difference of Gaussians - Wikipedia

    en.wikipedia.org/wiki/Difference_of_Gaussians

    When utilized for image enhancement, the difference of Gaussians algorithm is typically applied when the size ratio of kernel (2) to kernel (1) is 4:1 or 5:1. In the example images, the sizes of the Gaussian kernels employed to smooth the sample image were 10 pixels and 5 pixels.