Search results
Results From The WOW.Com Content Network
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
Food energy is chemical energy that animals (including humans) derive from their food to sustain their metabolism, including their muscular activity. [ 1 ] Most animals derive most of their energy from aerobic respiration , namely combining the carbohydrates , fats , and proteins with oxygen from air or dissolved in water . [ 2 ]
Energy density is the amount of energy per mass or volume of food. The energy density of a food can be determined from the label by dividing the energy per serving (usually in kilojoules or food calories) by the serving size (usually in grams, milliliters or fluid ounces). An energy unit commonly used in nutritional contexts within non-metric ...
The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).
In nutrition and food science, the term calorie and the symbol cal may refer to the large unit or to the small unit in different regions of the world. It is generally used in publications and package labels to express the energy value of foods in per serving or per weight, recommended dietary caloric intake, [6] [7] metabolic rates, etc.
Nutrient density identifies the amount of beneficial nutrients in a food product in proportion to e.g. energy content, weight or amount of perceived detrimental nutrients. Terms such as nutrient rich and micronutrient dense refer to similar properties.
The Atwater system, [1] named after Wilbur Olin Atwater, or derivatives of this system are used for the calculation of the available energy of foods.The system was developed largely from the experimental studies of Atwater and his colleagues in the later part of the 19th century and the early years of the 20th at Wesleyan University in Middletown, Connecticut.
In simple cases, the formula is just N-P, however there are some special cases. Based on the total score, a label ranging from A (best) to E (worst) is assigned. Nutritional contents negatively (N) affecting the Nutri-Score are: high energy density per 100 g or per 100 ml, high sugar content, high content of saturated fatty acids, high salt ...