When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    If the second derivative is null, the critical point is generally an inflection point, but may also be an undulation point, which may be a local minimum or a local maximum. For a function of n variables, the number of negative eigenvalues of the Hessian matrix at a critical point is called the index of the critical point.

  3. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...

  4. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    A simple example of a point of inflection is the function f(x) = x 3. There is a clear change of concavity about the point x = 0, and we can prove this by means of calculus. The second derivative of f is the everywhere-continuous 6x, and at x = 0, f″ = 0, and the sign changes about this point. So x = 0 is a point of inflection.

  5. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The sign of the expression Δ 0 = b 2 – 3ac inside the square root determines the number of critical points. If it is positive, then there are two critical points, one is a local maximum, and the other is a local minimum. If b 2 – 3ac = 0, then there is only one critical point, which is an inflection point.

  6. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  7. Critical point (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point...

    At the critical point, only one phase exists. The heat of vaporization is zero. There is a stationary inflection point in the constant-temperature line (critical isotherm) on a PV diagram. This means that at the critical point: [5] [6] [7] =,

  8. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  9. Critical variable - Wikipedia

    en.wikipedia.org/wiki/Critical_variable

    Critical variables are defined, for example in thermodynamics, in terms of the values of variables at the critical point. On a PV diagram, the critical point is an inflection point . Thus: [ 1 ]