Search results
Results From The WOW.Com Content Network
Torque-induced precession (gyroscopic precession) is the phenomenon in which the axis of a spinning object (e.g., a gyroscope) describes a cone in space when an external torque is applied to it. The phenomenon is commonly seen in a spinning toy top , but all rotating objects can undergo precession.
Precession causes the stars to change their longitude slightly each year, so the sidereal year is longer than the tropical year. Using observations of the equinoxes and solstices, Hipparchus found that the length of the tropical year was 365+1/4−1/300 days, or 365.24667 days (Evans 1998, p. 209).
Transit of Mercury on November 8, 2006 with sunspots #921, 922, and 923 The perihelion precession of Mercury. Under Newtonian physics, an object in an (isolated) two-body system, consisting of the object orbiting a spherical mass, would trace out an ellipse with the center of mass of the system at a focus of the ellipse.
The special and general theories of relativity give three types of corrections to the Newtonian precession, of a gyroscope near a large mass such as the earth. They are: They are: Thomas precession a special relativistic correction accounting for the observer being in a rotating non-inertial frame.
The difference between de Sitter precession and Lense–Thirring precession (frame dragging) is that the de Sitter effect is due simply to the presence of a central mass, whereas Lense–Thirring precession is due to the rotation of the central mass. The total precession is calculated by combining the de Sitter precession with the Lense ...
This third force causes the particle's elliptical orbit to precess (cyan orbit) in the direction of its rotation; this effect has been measured in Mercury, Venus and Earth. The yellow dot within the orbits represents the center of attraction, such as the Sun. The orbital precession rate may be derived using this radial effective potential V.
Static mass increase is a third effect noted by Einstein in the same paper. [6] The effect is an increase in inertia of a body when other masses are placed nearby. While not strictly a frame dragging effect (the term frame dragging is not used by Einstein), it is demonstrated by Einstein that it derives from the same equation of general relativity.
The difference between de Sitter precession and the Lense–Thirring effect is that the de Sitter effect is due simply to the presence of a central mass, whereas the Lense–Thirring effect is due to the rotation of the central mass. The total precession is calculated by combining the de Sitter precession with the Lense–Thirring precession.