Search results
Results From The WOW.Com Content Network
(Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I
Temperature gradients, thermal expansion or contraction and thermal shocks are things that can lead to thermal stress. This type of stress is highly dependent on the thermal expansion coefficient which varies from material to material. In general, the greater the temperature change, the higher the level of stress that can occur.
In mathematics and physics, the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in ...
The control of thermal expansion in brittle materials is a key concern for a wide range of reasons. For example, both glass and ceramics are brittle and uneven temperature causes uneven expansion which again causes thermal stress and this might lead to fracture. Ceramics need to be joined or work in concert with a wide range of materials and ...
Work and heat are not thermodynamic properties, but rather process quantities: flows of energy across a system boundary. Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat.
(Common) symbol/s Defining equation SI units Dimension Flow velocity vector field u = (,) m s −1 [L][T] −1: Velocity pseudovector field ω = s −1 [T] −1: Volume velocity, volume flux φ V (no standard symbol)
newton per coulomb (N⋅C −1), or equivalently, volt per meter (V⋅m −1) energy: joule (J) Young's modulus: pascal (Pa) or newton per square meter (N/m 2) eccentricity: unitless Euler's number (2.71828, base of the natural logarithm) unitless electron: unitless elementary charge: coulomb (C) force
L 2 M T −3 Θ −1: extensive Thermal conductivity: λ: Measure for the ease with which a material conducts heat W/(m⋅K) L M T −3 Θ −1: intensive Thermal resistance R: Measure for the ease with which an object resists conduction of heat K/W L −2 M −1 T 3 Θ: extensive Thermal resistivity R λ: Measure for the ease with which a ...