Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
The Python package NumPy provides a pseudoinverse calculation through its functions matrix.I and linalg.pinv; its pinv uses the SVD-based algorithm. SciPy adds a function scipy.linalg.pinv that uses a least-squares solver. The MASS package for R provides a calculation of the Moore–Penrose inverse through the ginv function. [24]
In Python, the function cholesky from the numpy.linalg module performs Cholesky decomposition. In Matlab, the chol function gives the Cholesky decomposition. Note that chol uses the upper triangular factor of the input matrix by default, i.e. it computes = where is upper triangular. A flag can be passed to use the lower triangular factor instead.
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
The inverse Gaussian distribution is a two-parameter exponential family with natural parameters −λ/(2μ 2) and −λ/2, and natural statistics X and 1/X.. For > fixed, it is also a single-parameter natural exponential family distribution [4] where the base distribution has density
Consider the following matrix as an example: = [] If we apply the full regular Cholesky decomposition, it yields: = [] And, by definition: = ′ However, by applying Cholesky decomposition, we observe that some zero elements in the original matrix end up being non-zero elements in the decomposed matrix, like elements (4,2), (5,2) and (5,3) in this example.
The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems.
The class of normal-inverse Gaussian distributions is closed under convolution in the following sense: [9] if and are independent random variables that are NIG-distributed with the same values of the parameters and , but possibly different values of the location and scale parameters, , and ,, respectively, then + is NIG-distributed with parameters ,, + and +.