Search results
Results From The WOW.Com Content Network
Figure 1. The seven transmembrane α-helix structure of a G-protein-coupled receptor. A neurotransmitter receptor (also known as a neuroreceptor) is a membrane receptor protein [1] that is activated by a neurotransmitter. [2] Chemicals on the outside of the cell, such as a neurotransmitter, can bump into the cell's membrane, in which there are ...
Human nervous system. Human nervous system – the part of the human body that coordinates a person's voluntary and involuntary actions and transmits signals between different parts of the body. The human nervous system consists of two main parts: the central nervous system (CNS) and the peripheral nervous system (PNS).
It is a presynaptic receptor, causing negative feedback on, for example, norepinephrine (NE). When NE is released into the synapse, it feeds back on the α 2 receptor, causing less NE release from the presynaptic neuron. This decreases the effect of NE. There are also α 2 receptors on the nerve terminal membrane of the post-synaptic adrenergic ...
The enteric nervous system functions to control the gastrointestinal system. Nerves that exit from the brain are called cranial nerves while those exiting from the spinal cord are called spinal nerves. The nervous system consists of nervous tissue which, at a cellular level, is defined by the presence of a special type of cell, called the ...
An antagonist is a chemical that acts within the body to reduce the physiological activity of another chemical substance (such as an opiate); especially one that opposes the action on the nervous system of a drug or a substance occurring naturally in the body by combining with and blocking its nervous receptor. [73]
The 5-HT 1B receptor as an example of a metabotropic serotonin receptor. Its crystallographic structure in ribbon representation. 5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems.
Agonists (activators) of the α 2-adrenergic receptor are frequently used in anaesthesia where they affect sedation, muscle relaxation and analgesia through effects on the central nervous system (CNS). [5] In the brain, α 2-adrenergic receptors can be localized either pre- or post-synaptically, and the majority of receptors appear to be post ...
In some receptor systems (e.g. acetylcholine at the neuromuscular junction in smooth muscle), agonists are able to elicit maximal response at very low levels of receptor occupancy (<1%). Thus, that system has spare receptors or a receptor reserve. This arrangement produces an economy of neurotransmitter production and release. [12]