Search results
Results From The WOW.Com Content Network
For example, chloroplasts in plants and green algae have lost all phycobilisomes, the light harvesting complexes found in cyanobacteria, red algae and glaucophytes, but instead contain stroma and grana thylakoids. The glaucocystophycean plastid—in contrast to chloroplasts and rhodoplasts—is still surrounded by the remains of the ...
A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. Chloroplasts have a high concentration of chlorophyll pigments which capture the energy from sunlight and convert it to chemical energy and release oxygen.
Chloroplasts probably evolved following an endosymbiotic event between an ancestral, photosynthetic cyanobacterium and an early eukaryotic phagotroph. [17] This event (termed primary endosymbiosis) is at the origin of the red and green algae (including the land plants or Embryophytes which emerged within them) and the glaucophytes, which together make up the oldest evolutionary lineages of ...
Each of the envelope membranes is a lipid bilayer that is between 6 and 8 nm thick. The lipid composition of the outer membrane has been found to be 48% phospholipids, 46% galactolipids and 7% sulfolipids, while the inner membrane has been found to contain 16% phospholipids, 79% galactolipids and 5% sulfolipids in spinach chloroplasts.
[1] Each photosystem has two parts: a reaction center, where the photochemistry occurs, and an antenna complex, which surrounds the reaction center. The antenna complex contains hundreds of chlorophyll molecules which funnel the excitation energy to the center of the photosystem. At the reaction center, the energy will be trapped and ...
Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH . [ 2 ]
An underexposure to light can cause the thylakoids to fail. This causes the chloroplasts to fail resulting to the death of the plant. Thylakoid formation requires the action of vesicle-inducing protein in plastids 1 (VIPP1). Plants cannot survive without this protein, and reduced VIPP1 levels lead to slower growth and paler plants with reduced ...
The structure and function of cytochrome b 6 f (in chloroplasts) is very similar to cytochrome bc 1 (Complex III in mitochondria). Both are transmembrane structures that remove electrons from a mobile, lipid-soluble electron carrier (plastoquinone in chloroplasts; ubiquinone in mitochondria) and transfer them to a mobile, water-soluble electron ...