When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    An identity matrix of any size, or any multiple of it is a diagonal matrix called a scalar matrix, for example, []. In geometry , a diagonal matrix may be used as a scaling matrix , since matrix multiplication with it results in changing scale (size) and possibly also shape ; only a scalar matrix results in uniform change in scale.

  3. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    The binary matrix with ones on the anti-diagonal, and zeroes everywhere else. a ij = δ n+1−i,j: A permutation matrix. Hilbert matrix: a ij = (i + j − 1) −1. A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j).

  4. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  5. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    Since the set F is both a set of eigenvectors for matrix A and it spans some arbitrary vector space, then we say that there exists a matrix which is a diagonal matrix that is similar to . In other words, A E {\displaystyle A_{E}} is a diagonalizable matrix if the matrix is written in the basis F.

  6. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    Thus, for example, the product of a 1 × n matrix and an n × 1 matrix, which is formally a 1 × 1 matrix, is often said to be a scalar. The real component of a quaternion is also called its scalar part. The term scalar matrix is used to denote a matrix of the form kI where k is a scalar and I is the identity matrix.

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3, the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ, e −iθ.

  8. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    The identity matrix commutes with all matrices. Jordan blocks commute with upper triangular matrices that have the same value along bands. If the product of two symmetric matrices is symmetric, then they must commute. That also means that every diagonal matrix commutes with all other diagonal matrices. [9] [10] Circulant matrices commute.

  9. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    The scalar expression assumes commutativity while the matrix expression does not, and thus they cannot be equated directly unless [,] =. For some f(x) this can be dealt with using the same method as scalar Taylor series. For example, () =.