Search results
Results From The WOW.Com Content Network
An identity matrix of any size, or any multiple of it is a diagonal matrix called a scalar matrix, for example, []. In geometry , a diagonal matrix may be used as a scaling matrix , since matrix multiplication with it results in changing scale (size) and possibly also shape ; only a scalar matrix results in uniform change in scale.
When G is k-regular, the normalized Laplacian is: = =, where A is the adjacency matrix and I is an identity matrix. For a graph with multiple connected components, L is a block diagonal matrix, where each block is the respective Laplacian matrix for each component, possibly after reordering the vertices (i.e. L is permutation-similar to a block ...
A scalar matrix is a diagonal matrix which is a constant times the identity matrix. The set of all nonzero scalar matrices forms a subgroup of GL(n, F) isomorphic to F ×. This group is the center of GL(n, F). In particular, it is a normal, abelian subgroup. The center of SL(n, F) is simply the set of all scalar matrices with unit determinant ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
A special case is a diagonal matrix, with arbitrary numbers ,, … along the diagonal: the axes of scaling are then the coordinate axes, and the transformation scales along each axis by the factor . In uniform scaling with a non-zero scale factor, all non-zero vectors retain their direction (as seen from the origin), or all have the direction ...
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]
The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .