When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor. The k-NN algorithm can also be generalized for regression.

  3. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.

  4. Nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor

    Nearest neighbor function in probability theory; Nearest neighbor decoding in coding theory; The k-nearest neighbor algorithm in machine learning, an application of generalized forms of nearest neighbor search and interpolation; The nearest neighbour algorithm for approximately solving the travelling salesman problem; The nearest-neighbor ...

  5. Nearest neighbour algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_algorithm

    The nearest neighbour algorithm is easy to implement and executes quickly, but it can sometimes miss shorter routes which are easily noticed with human insight, due to its "greedy" nature. As a general guide, if the last few stages of the tour are comparable in length to the first stages, then the tour is reasonable; if they are much greater ...

  6. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    Additionally, even in low-dimensional space, if the average pairwise distance between the k nearest neighbors of the query point is significantly less than the average distance between the query point and each of the k nearest neighbors, the performance of nearest neighbor search degrades towards linear, since the distances from the query point ...

  7. iDistance - Wikipedia

    en.wikipedia.org/wiki/IDistance

    In pattern recognition, the iDistance is an indexing and query processing technique for k-nearest neighbor queries on point data in multi-dimensional metric spaces.The kNN query is one of the hardest problems on multi-dimensional data, especially when the dimensionality of the data is high.

  8. Good Neighbor Next Door program: What it is and how to apply

    www.aol.com/finance/good-neighbor-next-door...

    Key takeaways. The Good Neighbor Next Door Program offers qualifying buyers a chance to purchase a HUD-owned property for half off the list price and a down payment as low as $100.

  9. Neighbourhood components analysis - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_components...

    Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. . Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbo