Search results
Results From The WOW.Com Content Network
More generally, if an arbitrary origin is chosen where the Cartesian coordinates of the vertices are known and represented by the vectors ,, and if the point P has trilinear coordinates x : y : z, then the Cartesian coordinates of are the weighted average of the Cartesian coordinates of these vertices using the barycentric ...
Homogeneous coordinates are not uniquely determined by a point, so a function defined on the coordinates, say (,,), does not determine a function defined on points as with Cartesian coordinates. But a condition f ( x , y , z ) = 0 {\displaystyle f(x,y,z)=0} defined on the coordinates, as might be used to describe a curve, determines a condition ...
The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...
The Nagel triangle or extouch triangle of is denoted by the vertices , , and that are the three points where the excircles touch the reference and where is opposite of , etc. This T A T B T C {\displaystyle \triangle T_{A}T_{B}T_{C}} is also known as the extouch triangle of A B C {\displaystyle \triangle ABC} .
The area of the extouch triangle, K T, is given by: = where K and r are the area and radius of the incircle, s is the semiperimeter of the original triangle, and a, b, c are the side lengths of the original triangle. This is the same area as that of the intouch triangle. [2]
Barycentric coordinates are strongly related to Cartesian coordinates and, more generally, affine coordinates.For a space of dimension n, these coordinate systems are defined relative to a point O, the origin, whose coordinates are zero, and n points , …,, whose coordinates are zero except that of index i that equals one.
By convention only the first of the three trilinear coordinates of a triangle center is quoted since the other two are obtained by cyclic permutation of a, b, c. This process is known as cyclicity. [4] [5] Every triangle center function corresponds to a unique triangle center. This correspondence is not bijective. Different functions may define ...
The basic triangle on a unit sphere. Both vertices and angles at the vertices of a triangle are denoted by the same upper case letters A, B, and C. Sides are denoted by lower-case letters: a, b, and c. The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see arc length).