Search results
Results From The WOW.Com Content Network
Images Object recognition and classification 2008 [56] [57] [58] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, Roberto Cipolla RailSem19 RailSem19 is a dataset for understanding scenes for vision systems on railways. The dataset is labeled semanticly and box-wise. 8500 Images Object recognition and classification, scene recognition 2019 ...
Object recognition (also called object classification) – one or several pre-specified or learned objects or object classes can be recognized, usually together with their 2D positions in the image or 3D poses in the scene.
One of the most highly used subset of ImageNet is the "ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012–2017 image classification and localization dataset". This is also referred to in the research literature as ImageNet-1K or ILSVRC2017, reflecting the original ILSVRC challenge that involved 1,000 classes.
The size of the OPTIMOL-retrieved image sets surpass that of large human-labeled image sets for the same categories, such as those found in Caltech 101. Classification accuracy: Classification accuracy was compared to the accuracy displayed by the classifier yielded by the pLSA methods discussed earlier. It was discovered that OPTIMOL achieved ...
Contextual image classification, a topic of pattern recognition in computer vision, is an approach of classification based on contextual information in images. "Contextual" means this approach is focusing on the relationship of the nearby pixels, which is also called neighbourhood.
[9] [10] The last two examples form the subtopic image analysis of pattern recognition that deals with digital images as input to pattern recognition systems. [11] [12] Optical character recognition is an example of the application of a pattern classifier. The method of signing one's name was captured with stylus and overlay starting in 1990.
Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]