Search results
Results From The WOW.Com Content Network
The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.
Formally, let V be a vector space over a field K and W a vector space over a field L. Consider the projective spaces PG(V) and PG(W), consisting of the vector lines of V and W. Call D(V) and D(W) the set of subspaces of V and W respectively. A collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that: α is a bijection.
The mathematical statement of the three-body problem can be given in terms of the Newtonian equations of motion for vector ... the three masses are collinear at ...
The normal form of the equation of a straight line on the plane is given by: + =, where is the angle of inclination of the normal segment (the oriented angle from the unit vector of the x-axis to this segment), and p is the (positive) length of the normal segment.
The most obvious use of these equations is for images recorded by a camera. In this case the equation describes transformations from object space (X, Y, Z) to image coordinates (x, y). It forms the basis for the equations used in bundle adjustment. They indicate that the image point (on the sensor plate of the camera), the observed point (on ...
For example, the equation (+) = has no real solution, because the square of a real number cannot be negative, but has the two nonreal complex solutions + and . Addition, subtraction and multiplication of complex numbers can be naturally defined by using the rule i 2 = − 1 {\displaystyle i^{2}=-1} along with the associative , commutative , and ...
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
In mathematics it is a common convention to express the normal as a unit vector, but the above argument holds for a normal vector of any non-zero length. Conversely, it is easily shown that if a , b , c , and d are constants and a , b , and c are not all zero, then the graph of the equation a x + b y + c z + d = 0 , {\displaystyle ax+by+cz+d=0 ...