Search results
Results From The WOW.Com Content Network
Industrial enzymes are enzymes that are commercially used in a variety of industries such as pharmaceuticals, chemical production, biofuels, food and beverage, and consumer products. Due to advancements in recent years, biocatalysis through isolated enzymes is considered more economical than use of whole cells.
Enzymatic polymerization is a potential area in polymer research, providing a sustainable and adaptable alternative to conventional polymerization processes. Its capacity to manufacture polymers with exact structures in mild circumstances opens up new possibilities for material design and application, helping to progress both research and industry.
Microbial enzymes are widely utilized as biocatalysts in fields such as biotechnology, agriculture, and pharmaceuticals. Metagenomic data serve as a valuable resource for identifying novel CUEs from previously unknown microbes present in complex microbial communities across diverse ecosystems.
Processes are conducted in vessels up to 60,000 gal in volume. Sugars, methionine, and ammonium salts are used as C,S,N sources. Genetically modified Penicillium chrysogenum is employed for penicillin production. [4] Some steroids are hydroxylated in vitro to give drugs.
Industrial fermentation is the intentional use of fermentation in manufacturing processes. In addition to the mass production of fermented foods and drinks, industrial fermentation has widespread applications in chemical industry. Commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. [1]
The use of cross-linked enzyme crystals (CLECs) as industrial biocatalysts was pioneered by Altus Biologics in the 1990s. CLECs proved to be significantly more stable to denaturation by heat, organic solvents and proteolysis than the corresponding soluble enzyme or lyophilized (freeze-dried) powder. CLECs are robust, highly active immobilized ...
Psychrophilic extremophiles have the ability to maintain high growth rates and enzyme activity at temperatures even as low as 0°C. This presents the possibility of utilizing enzymes found in these organisms in parallel to how thermophilic organism enzymes are used, but at low temperatures as opposed to high temperatures. [4]
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...