Search results
Results From The WOW.Com Content Network
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
Generalizing from geometrical symmetry in the previous section, one can say that a mathematical object is symmetric with respect to a given mathematical operation, if, when applied to the object, this operation preserves some property of the object. [15] The set of operations that preserve a given property of the object form a group.
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.
The smallest asymmetric regular graphs have ten vertices; there exist 10-vertex asymmetric graphs that are 4-regular and 5-regular. [2] [3] One of the five smallest asymmetric cubic graphs [4] is the twelve-vertex Frucht graph discovered in 1939. [5] According to a strengthened version of Frucht's theorem, there are infinitely many asymmetric ...
Asymmetry is the absence of, or a violation of, symmetry (the property of an object being invariant to a transformation, such as reflection). [1] Symmetry is an important property of both physical and abstract systems and it may be displayed in precise terms or in more aesthetic terms. [2]
In the mathematical field of graph theory, an automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edge–vertex connectivity. Formally, an automorphism of a graph G = ( V , E ) is a permutation σ of the vertex set V , such that the pair of vertices ( u , v ) form an edge if and only if ...
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.
C 1 is the trivial group containing only the identity operation, which occurs when the figure is asymmetric, for example the letter "F". C 2 is the symmetry group of the letter "Z", C 3 that of a triskelion, C 4 of a swastika, and C 5, C 6, etc. are the symmetry groups of similar swastika-like figures with five, six, etc. arms instead of four.