Search results
Results From The WOW.Com Content Network
Floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance in computing, useful in fields of scientific computations that require floating-point calculations. [1] For such cases, it is a more accurate measure than measuring instructions per second. [citation needed]
Assuming Moore's law remains applicable, such systems may be feasible around 2035. [20] A zettascale computer system could generate more single floating point data in one second than was stored by any digital means on Earth in the first quarter of 2011. [citation needed]
In computer architecture, cycles per instruction (aka clock cycles per instruction, clocks per instruction, or CPI) is one aspect of a processor's performance: the average number of clock cycles per instruction for a program or program fragment. [1] It is the multiplicative inverse of instructions per cycle.
The final result comes from dividing the number of instructions by the number of CPU clock cycles. The number of instructions per second and floating point operations per second for a processor can be derived by multiplying the number of instructions per cycle with the clock rate (cycles per second given in Hertz) of the processor in question ...
Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic.
In 1978, the program was updated to log running time of each of the tests, allowing MFLOPS (Millions of Floating Point Operations Per Second) to be included in reports, along with an estimation of Integer MIPS (Millions of Instructions Per Second). In 1987, MFLOPS calculations were included in the log for the three appropriate tests and MOPS ...
Determine how many 64 bit (or better) floating point operations every processor in the system can perform per clock cycle (best case). This is FPO(i). Determine the clock frequency of every processor. This is F(i). Choose the weighting factor for each processor: 0.9 for vector processors and 0.3 for non-vector processors. This is W(i).
The performance of a computer is a complex issue that depends on many interconnected variables. The performance measured by the LINPACK benchmark consists of the number of 64-bit floating-point operations, generally additions and multiplications, a computer can perform per second, also known as FLOPS. However, a computer's performance when ...