Search results
Results From The WOW.Com Content Network
Hypocapnia (from the Greek words ὑπό meaning below normal and καπνός kapnós meaning smoke), also known as hypocarbia, sometimes incorrectly called acapnia, is a state of reduced carbon dioxide in the blood. [1] Hypocapnia usually results from deep or rapid breathing, known as hyperventilation. Hypocapnia is the opposite of hypercapnia.
Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]
Bicarbonate in the red blood cell (RBC) exchanging with chloride from plasma in the lungs. The underlying properties creating the chloride shift are the presence of carbonic anhydrase within the RBCs but not the plasma, and the permeability of the RBC membrane to carbon dioxide and bicarbonate ion but not to hydrogen ion.
Lactic acidosis is commonly found in people who are unwell, such as those with severe heart and/or lung disease, a severe infection with sepsis, the systemic inflammatory response syndrome due to another cause, severe physical trauma, or severe depletion of body fluids. [3]
The version with seven tests is often referred to by medical professionals in the United States as the "CHEM-7", or "SMA-7" (Sequential Multiple Analysis-7). [1] The seven parts of a CHEM-7 are tests for: Four electrolytes: sodium (Na +) [2] potassium (K +) [3] chloride (Cl −) [4] bicarbonate (HCO 3 −) or CO 2 [5] blood urea (BU), blood ...
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”
Metabolic alkalosis is an acid-base disorder in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate (HCO − 3), or alternatively a direct result of increased bicarbonate concentrations.
The renal compensation process usually takes a few days to complete as it is dependent upon changes in the reabsorption of bicarbonate. [4] End-staged renal diseases as well as chronic kidney diseases increase the overall risk of individuals developing pneumonia due to the interactions between the kidneys and the lungs. [ 3 ]